Genetic and Hormonal Control of Bone Volume, Architecture, and Remodeling in XXY Mice
نویسندگان
چکیده
Klinefelter syndrome is the most common chromosomal aneuploidy in men (XXY karyotype, 1 in 600 live births) and results in testicular (infertility and androgen deficiency) and nontesticular (cognitive impairment and osteoporosis) deficits. The extent to which skeletal changes are due to testosterone deficiency or arise directly from gene overdosage cannot be determined easily in humans. To answer this, we generated XXY mice through a four-generation breeding scheme. Eight intact XXY and 9 XY littermate controls and 8 castrated XXY mice and 8 castrated XY littermate controls were euthanized at 1 year of age. Castration occurred 6 months prior to killing. A third group of 9 XXY and 11 XY littermates were castrated and simultaneously implanted with a 1-cm Silastic testosterone capsule 8 weeks prior to sacrifice. Tibias were harvested from all three groups and examined by micro-computed tomography and histomorphometry. Blood testosterone concentration was assayed by radioimmunoassay. Compared with intact XY controls, intact androgen-deficient XXY mice had lower bone volume (6.8% +/- 1.2% versus 8.8% +/- 1.7%, mean +/- SD, p = .01) and thinner trabeculae (50 +/- 4 µm versus 57 +/- 5 µm, p = .007). Trabecular separation (270 +/- 20 µm versus 270 +/- 20 µm) or osteoclast number relative to bone surface (2.4 +/- 1.0/mm2 versus 2.7 +/- 1.5/mm2) did not differ significantly. Testosterone-replaced XXY mice continued to show lower bone volume (5.5% +/- 2.4% versus 8.1% +/- 3.5%, p = .026). They also exhibited greater trabecular separation (380 +/- 69 µm versus 324 +/- 62 µm, p = .040) but equivalent blood testosterone concentrations (6.3 +/- 1.8 ng/mL versus 8.2 +/- 4.2 ng/mL, p = .28) compared with testosterone-replaced XY littermates. In contrast, castration alone drastically decreased bone volume (p < .001), trabecular thickness (p = .05), and trabecular separation (p < .01) to such a great extent that differences between XXY and XY mice were undetectable. In conclusion, XXY mice replicate many features of human Klinefelter syndrome and therefore are a useful model for studying bone. Testosterone deficiency does not explain the bone phenotype because testosterone-replaced XXY mice show reduced bone volume despite similar blood testosterone levels.
منابع مشابه
Trabecular bone changes induced by fast neutrons versus gamma rays in mice
Background: The trabecular bone changes in the tibia of C3H/HeN mice were measured 12 weeks after whole body irradiation with various doses of fast neutrons (0-2.4 Gy) or 137Cs-generated gamma-rays (0-6 Gy). Materials and Methods: Serum calcium, phosphorus, estradiol concentration and alkaline phosphatase activity were measured. Tibiae were anal...
متن کاملThe Effect of Cinnamon Extract on Spermatogenesis Hormonal Axis of Pituitary Gonad in Mice
Cinnamon has many therapeutic effects, such as its impact the increase of sexual ability. This experiment was conducted to determine the effect of cinnamon extract on spermatogenesis and hormonal axis of pituitary gonad in mice. The animals used in this study are male adult mice (weighing about 30-34 g and 9-10 weeks old). Cinnamon was purchased from one of the most valid shops in Jahrom and th...
متن کاملP-181: Protective Role of Vitamin E As An Alternative Treatment for Ovariectomized Osteoporotic Rats
Background: Osteoporosis one of the postmenopausal symptoms is characterized by bone loss. There is a link between excessive reactive oxygen species (ROS) formation, estrogen deficiency due to cessation of ovarian function and bone loss. Free radicals are responsible for causing osteoblast apoptosis and reducing osteoblastogenesis in bone remodeling. Vitamin E is a potent antioxidant with the a...
متن کاملCitrus extract protects mouse bone marrow cells against gamma-irradiation
With respect to radiation damage to humans, it is important to seek possible radioprotectants to modify the normal response of biological systems to radiation-induced toxicity or lethality. For this reasons, the search for less-toxic radiation radioprotectants has spurred interest in the development of different compounds. The radioprotective effects of citrus extract were investigated by using...
متن کاملCitrus extract protects mouse bone marrow cells against gamma-irradiation
With respect to radiation damage to humans, it is important to seek possible radioprotectants to modify the normal response of biological systems to radiation-induced toxicity or lethality. For this reasons, the search for less-toxic radiation radioprotectants has spurred interest in the development of different compounds. The radioprotective effects of citrus extract were investigated by using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 25 شماره
صفحات -
تاریخ انتشار 2010